Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Immunol ; 14: 1166574, 2023.
Article in English | MEDLINE | ID: covidwho-20239034

ABSTRACT

Background: Dysregulated immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are thought to underlie the progression of coronavirus disease 2019 (COVID-19) to severe disease. We sought to determine whether early host immune-related gene expression could predict clinical progression to severe disease. Methods: We analysed the expression of 579 immunological genes in peripheral blood mononuclear cells taken early after symptom onset using the NanoString nCounter and compared SARS-CoV-2 negative controls with SARS-CoV-2 positive subjects with mild (SARS+ Mild) and Moderate/Severe disease to evaluate disease outcomes. Biobanked plasma samples were also assessed for type I (IFN-α2a and IFN-ß), type II (IFN-γ) and type III (IFN-λ1) interferons (IFNs) as well as 10 additional cytokines using multiplex immunoassays. Results: We identified 19 significantly deregulated genes in 62 SARS-CoV-2 positive subject samples within 5 days of symptom onset and 58 SARS-CoV-2 negative controls and found that type I interferon (IFN) signalling (MX1, IRF7, IFITM1, IFI35, STAT2, IRF4, PML, BST2, STAT1) and genes encoding proinflammatory cytokines (TNF, TNFSF4, PTGS2 and IL1B) were upregulated in both SARS+ groups. Moreover, we found that FCER1, involved in mast cell activation, was upregulated in the SARS+ Mild group but significantly downregulated in the SARS+ Moderate/Severe group. In both SARS+ groups we discovered elevated interferon type I IFN-α2a, type II IFN and type III IFN λ1 plasma levels together with higher IL-10 and IL-6. These results indicate that those with moderate or severe disease are characterised by deficiencies in a mast cell response together with IFN hyper-responsiveness, suggesting that early host antiviral immune responses could be a cause and not a consequence of severe COVID-19. Conclusions: This study suggests that early host immune responses linking defects in mast cell activation with host interferon responses correlates with more severe outcomes in COVID-19. Further characterisation of this pathway could help inform better treatment for vulnerable individuals.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2 , Leukocytes, Mononuclear , Mast Cells , Cell Line , Cytokines , OX40 Ligand
2.
Int J Med Inform ; 169: 104911, 2023 01.
Article in English | MEDLINE | ID: covidwho-2095482

ABSTRACT

BACKGROUND: Monitoring systems have been developed during the COVID-19 pandemic enabling clinicians to remotely monitor physiological measures including pulse oxygen saturation (SpO2), heart rate (HR), and breathlessness in patients after discharge from hospital. These data may be leveraged to understand how symptoms vary over time in COVID-19 patients. There is also potential to use remote monitoring systems to predict clinical deterioration allowing early identification of patients in need of intervention. METHODS: A remote monitoring system was used to monitor 209 patients diagnosed with COVID-19 in the period following hospital discharge. This system consisted of a patient-facing app paired with a Bluetooth-enabled pulse oximeter (measuring SpO2 and HR) linked to a secure portal where data were available for clinical review. Breathlessness score was entered manually to the app. Clinical teams were alerted automatically when SpO2 < 94 %. In this study, data recorded during the initial ten days of monitoring were retrospectively examined, and a random forest model was developed to predict SpO2 < 94 % on a given day using SpO2 and HR data from the two previous days and day of discharge. RESULTS: Over the 10-day monitoring period, mean SpO2 and HR increased significantly, while breathlessness decreased. The coefficient of variation in SpO2, HR and breathlessness also decreased over the monitoring period. The model predicted SpO2 alerts (SpO2 < 94 %) with a mean cross-validated. sensitivity of 66 ± 18.57 %, specificity of 88.31 ± 10.97 % and area under the receiver operating characteristic of 0.80 ± 0.11. Patient age and sex were not significantly associated with the occurrence of asymptomatic SpO2 alerts. CONCLUSION: Results indicate that SpO2 alerts (SpO2 < 94 %) on a given day can be predicted using SpO2 and heart rate data captured on the two preceding days via remote monitoring. The methods presented may help early identification of patients with COVID-19 at risk of clinical deterioration using remote monitoring.


Subject(s)
COVID-19 , Clinical Deterioration , Humans , Heart Rate , Oxygen Saturation , Pandemics , Retrospective Studies , COVID-19/diagnosis , Hospitals
3.
J Immunol Methods ; 510: 113345, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2004232

ABSTRACT

Measurement of quantitative antibody responses are increasingly important in evaluating the immune response to infection and vaccination. In this study we describe the validation of a quantitative, multiplex serologic assay utilising an electrochemiluminescence platform, which measures IgG against the receptor binding domain (RBD), spike S1 and S2 subunits and nucleocapsid antigens of SARS-CoV-2. The assay displayed a sensitivity ranging from 73 to 91% and specificity from 90 to 96% in detecting previous infection with SARS-CoV-2 depending on antigenic target and time since infection, and this assay highly correlated with commercially available assays. The within-plate coefficient of variation ranged from 3.8-3.9% and the inter-plate coefficient of variation from 11 to 13% for each antigen.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunoglobulin G , SARS-CoV-2 , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus , Vaccination
4.
Open Forum Infect Dis ; 9(4): ofac060, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1795134

ABSTRACT

Background: We aimed to describe the clinical presentation of individuals presenting with prolonged recovery from coronavirus disease 2019 (COVID-19), known as long COVID. Methods: This was an analysis within a multicenter, prospective cohort study of individuals with a confirmed diagnosis of COVID-19 and persistent symptoms >4 weeks from onset of acute symptoms. We performed a multiple correspondence analysis (MCA) on the most common self-reported symptoms and hierarchical clustering on the results of the MCA to identify symptom clusters. Results: Two hundred thirty-three individuals were included in the analysis; the median age of the cohort was 43 (interquartile range [IQR], 36-54) years, 74% were women, and 77.3% reported a mild initial illness. MCA and hierarchical clustering revealed 3 clusters. Cluster 1 had predominantly pain symptoms with a higher proportion of joint pain, myalgia, and headache; cluster 2 had a preponderance of cardiovascular symptoms with prominent chest pain, shortness of breath, and palpitations; and cluster 3 had significantly fewer symptoms than the other clusters (2 [IQR, 2-3] symptoms per individual in cluster 3 vs 6 [IQR, 5-7] and 4 [IQR, 3-5] in clusters 1 and 2, respectively; P < .001). Clusters 1 and 2 had greater functional impairment, demonstrated by significantly longer work absence, higher dyspnea scores, and lower scores in SF-36 domains of general health, physical functioning, and role limitation due to physical functioning and social functioning. Conclusions: Clusters of symptoms are evident in long COVID patients that are associated with functional impairments and may point to distinct underlying pathophysiologic mechanisms of disease.

6.
Open Forum Infect Dis ; 8(8): ofab122, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1352255

ABSTRACT

BACKGROUND: Although reports suggest that most individuals with coronavirus disease 2019 (COVID-19) develop detectable antibodies postinfection, the kinetics, durability, and relative differences between immunoglobulin M (IgM) and immunoglobulin G (IgG) responses beyond the first few weeks after symptom onset remain poorly understood. METHODS: Within a large, well-phenotyped, diverse, prospective cohort of subjects with and without severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR)-confirmed infection and historical controls derived from cohorts with high prevalence of viral coinfections and samples taken during prior flu seasons, we measured SARS-CoV-2 serological responses (both IgG and IgM) using commercially available assays. We calculated sensitivity, specificity, and relationship with disease severity and mapped the kinetics of antibody responses over time using generalized additive models. RESULTS: We analyzed 1001 samples from 752 subjects, 327 with confirmed SARS-CoV-2 (29.7% with severe disease) spanning a period of 90 days from symptom onset. Sensitivity was lower (44.1%-47.1%) early (<10 days) after symptom onset but increased to >80% after 10 days. IgM positivity increased earlier than IgG-targeted assays, but positivity peaked between days 32 and 38 post-onset of symptoms and declined thereafter, a dynamic that was confirmed when antibody levels were analyzed, with a more rapid decline observed with IgM. Early (<10 days) IgM but not IgG levels were significantly higher in those who subsequently developed severe disease (signal/cutoff 4.20 [0.75-17.93] vs 1.07 [0.21-5.46]; P = .048). CONCLUSIONS: This study suggests that postinfectious antibody responses in those with confirmed COVID-19 begin to decline relatively early postinfection and suggests a potential role for higher IgM levels early in infection in the prediction of subsequent disease severity.

7.
Ir J Med Sci ; 191(2): 629-636, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1227915

ABSTRACT

BACKGROUND: Healthcare workers are encouraged annually to get vaccinated against influenza. This year in view of COVID-19 pandemic, attitudes of HCWs towards vaccination are particularly important. A cross-sectional study was completed to understand how to best encourage and facilitate the vaccination of HCWs based on the previous years' findings. METHODS: An online survey was disseminated to all hospital staff via electronic channels. The clinical audit sphinx software was used for data collection and analysis. RESULTS: The total number of responses was n = 728, almost double the rate from 2018 (N = 393). A total of 78% (N = 551) of participants were vaccinated last year. A total of 94% (N = 677) of participants reported their intention to be vaccinated this year. The main barriers listed were being unable to find time (32%, N = 36), side effects (30%, N = 33) and thinking that it does not work (21%, N = 23). The most popular suggestions for how to increase uptake were more mobile immunisation clinics (72%, N = 517) and more information on the vaccine (50%, N = 360). A total of 82% of participants (N = 590) agreed that healthcare workers should be vaccinated, with 56% (N = 405) agreeing that it should be mandatory. Of the participants who were not vaccinated last year (N = 159), 40% (N = 63) agreed that COVID-19 had changed their opinion on influenza immunisation with a further 11% (N = 18) strongly agreeing. DISCUSSION: In light of the increasing number of survey participants, more staff were interested in flu vaccination this year than ever before. The COVID-19 pandemic has had some influence on staff's likelihood to be vaccinated. Feasibility of immunisation and education posed the largest barriers to HCW vaccination.


Subject(s)
COVID-19 , Influenza, Human , Attitude of Health Personnel , COVID-19/prevention & control , Cross-Sectional Studies , Health Personnel , Hospitals , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Surveys and Questionnaires , Tertiary Healthcare , Vaccination
8.
Emerg Med J ; 37(11): 714-716, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-798326

ABSTRACT

We describe the expansion and adaptation of a frailty response team to assess older people in their usual place of residence. The team had commenced a weekend service to a limited area in February 2020. As a consequence of demand related to the COVID-19 pandemic, we expanded it and adapted the model of care to provide a 7-day service to our entire catchment area. Five hundred and ninety two patient reviews have been completed in the first 105 days of operation with 43 patients transferred to hospital for further investigation or management following assessment.


Subject(s)
Coronavirus Infections/epidemiology , Emergency Medical Services/organization & administration , Frail Elderly , Geriatric Assessment , Health Services for the Aged/organization & administration , Home Care Services, Hospital-Based/organization & administration , Pneumonia, Viral/epidemiology , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Female , Humans , Ireland/epidemiology , Male , Pandemics , SARS-CoV-2
9.
Trials ; 21(1): 758, 2020 Sep 03.
Article in English | MEDLINE | ID: covidwho-745011

ABSTRACT

OBJECTIVES: Tocilizumab is a humanized monoclonal antibody which targets and inhibits interleukin-6 (IL-6) and has demonstrated efficacy in treating diseases associated with hyper-inflammation. Data are suggestive of tocilizumab as a potential treatment for patients with COVID-19 infection. The aim of this study is to determine the safety and efficacy of standard dose versus low dose tocilizumab in adults with severe, non-critical, PCR-confirmed COVID-19 infection with evidence of progressive decline in respiratory function and evolving systemic inflammation on time to intubation, non-invasive ventilation and/or all-cause mortality. TRIAL DESIGN: This trial is a phase 2, open label, two-stage, multicentre, randomised trial. PARTICIPANTS: Adult subjects with severe, non-critical, PCR-confirmed COVID-19 infection with evidence of progressive decline in respiratory function and evolving systemic inflammation requiring admission to hospital at St. Vincent's University Hospital and Mater Misericordiae University Hospital, Dublin, Ireland. Inclusion criteria Aged 18 years or older. Confirmed SARS-CoV2 infection (as defined by positive PCR). Evidence of hyper inflammatory state as evidenced by at least three of the following: Documented temperature >38°C in the past 48 hours, IL6 >40 pg/ml, or in its absence D-dimer >1.5 µgFEU /ml, Elevated CRP (>100mg/L) and/or a three-fold increase since presentation, Elevated ferritin X5 ULN, Elevated LDH (above the ULN), Elevated fibrinogen (above the ULN). Pulmonary infiltrates on chest imaging. Moderate to severe respiratory failure as defined by PaO2/FiO2≤300mmHg. INTERVENTION AND COMPARATOR: Intervention for participants in this trial is SOC plus Tocilizumab compared to SOC alone (comparator). For Stage 1, following randomisation, subjects will receive either (Arm 1) SOC alone or (Arm 2) SOC plus Tocilizumab (standard single dose - 8mg/kg, infused over 60 minutes. Once stage 1 has fully recruited, subsequent participants will be enrolled directly into Stage 2 and receive either (Arm 1) SOC plus Tocilizumab (standard single dose - 8mg/kg, infused over 60 minutes or (Arm 2) SOC plus Tocilizumab (standard single dose - 4mg/kg, infused over 60 minutes). MAIN OUTCOMES: The primary endpoint for this study is the time to a composite primary endpoint of progression to intubation and ventilation, non-invasive ventilation or death within 28 days post randomisation. RANDOMISATION: Eligible patients will be randomised (1:1) using a central register. Randomisation will be performed through an interactive, web-based electronic data capturing database. In stage 1, eligible participants will be randomised (1:1) to (Arm 1) SOC alone or to (Arm 2) SOC with single dose (8mg/kg, maximum 800mg) intravenous tocilizumab infused over 60 minutes. In stage 2, eligible participants will be randomised (1:1) to receive either (Arm 1) single, standard dose (8mg/kg, maximum 800mg) intravenous tocilizumab infused over 60 minutes or (Arm 2) reduced dose (4mg/kg, maximum 800mg) intravenous tocilizumab infused over 60 minutes. BLINDING: This study is open label. The study will not be blinded to investigators, subjects, or medical or nursing staff. The trial statistician will be blinded for data analysis and will be kept unaware of treatment group assignments. To facilitate this, the randomisation schedule will be drawn up by an independent statistician and objective criteria were defined for the primary outcome to minimize potential bias. NUMBERS TO BE RANDOMISED: In stage 1, 90 subjects will be randomised 1:1, 45 to SOC and 45 subjects to SOC plus Tocilizumab (8mg/kg, infused over 60 minutes). In stage 2, sample size calculation for the dose evaluation stage will use data generated from stage 1 using the same primary endpoint as in stage 1. TRIAL STATUS: The COVIRL002 trial (Protocol version 1.4, 13th May 2020) commenced in May 2020 at St. Vincent's University Hospital and Mater Misericordiae University Hospital, Dublin, Ireland. Recruitment is proceeding with the aim to achieve the target sample size on or before April 2021. TRIAL REGISTRATION: COVIRL002 was registered 25 June 2020 under EudraCT number: 2020-001767-86 and Protocol identification: UCDCRC/20/02. FULL PROTOCOL: The full protocol for COVIRL002 is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Betacoronavirus/pathogenicity , COVID-19 , Clinical Trials, Phase II as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/virology , Disease Progression , Host Microbial Interactions , Humans , Intubation, Intratracheal , Ireland , Multicenter Studies as Topic , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index , Time Factors , Treatment Outcome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL